71 research outputs found

    Clusters of matter and antimatter

    Full text link
    In this talk I first give a short overview of antinuclei production in recent experiments at RHIC. Then I discuss the possibility of producing new types of nuclear systems by implanting an antibaryon into ordinary nuclei. The structure of nuclei containing one antiproton or antilambda is investigated within the framework of a relativistic mean-field model. Self-consistent calculations predict an enhanced binding and considerable compression in such systems as compared with normal nuclei. I present arguments that the life time of such nuclei with respect to the antibaryon annihilation might be long enough for their observation. Few experimental signatures are suggested. Possible formation of multi-quark-antiquark clusters is also discussed.Comment: 9 pages, 6 eps figures, invited talk at the VIII International Conference on Nucleus-Nucleus Collisions (Moscow, 17-21 June 2003

    Entropy puzzle in small exploding systems

    Get PDF
    We use a simple hard-core gas model to study the dynamics of small exploding systems. The system is initially prepared in a thermalized state in a spherical container and then allowed to expand freely into the vacuum. We follow the expansion dynamics by recording the coordinates and velocities of all particles until their last collision points (freeze-out). We have found that the entropy per particle calculated for the ensemble of freeze-out points is very close to the initial value. This is in apparent contradiction with the Joule experiment in which the entropy grows when the gas expands irreversibly into a larger volume.Comment: 10 pages, 4 figures, accepted June 17 2003 for publication in Physics Letters

    Enhanced binding and cold compression of nuclei due to admixture of antibaryons

    Get PDF
    We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean--field model assuming that the nucleon and antinucleon potentials are related by the G-parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.Comment: 10 pages, 3 figures, to be submitted to Phys. Lett.

    Constraints on possible phase transitions above the nuclear saturation density

    Get PDF
    We compare different models for hadronic and quark phases of cold baryon-rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka-type mean-field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu-Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.Comment: 28 pages, 18 PostScript figures, submitted to Phys. Rev.

    Nuclear liquid-gas phase transition within the lattice gas model

    Get PDF
    We study the nuclear liquid-gas phase transition on the basis of a two-component lattice gas model. A Metropolis type of sampling method is used to generate microscopic states in the canonical ensemble. The effective equation of state and fragment mass distributions are evaluated in a wide range of temperatures and densities. A definition of the phase coexistence region appropriate for mesoscopic systems is proposed. The caloric curve resulting from different types of freeze-out conditions are presented.Comment: 13 pages including 4 figure

    Unusual bound states of quark matter within the NJL model

    Full text link
    Properties of dense quark matter in and out of chemical equilibrium are studied within the SU(3) Nambu-Jona-Lasinio model. In addition to the 4-fermion scalar and vector terms the model includes also the 6-fermion flavour mixing interaction. First we study a novel form of deconfined matter, meso-matter, which is composed of equal number of quarks and antiquarks. It can be thought of as a strongly compressed meson gas where mesons are melted into their elementary constituents, quarks and antiquarks. Strongly bound states in this quark-antiquark matter are predicted for all flavour combinations of quark-antiquark pairs. The maximum binding energy reaches up to 180 MeV per pair for mixtures with about 70% of strange quark-antiquark pairs. Equilibrated baryon-rich quark matter with various flavour compositions is also studied. In this case only shallow bound states appear in systems with a significant admixture (about 40%) of strange quarks (strangelets). Their binding energies are quite sensitive to the relative strengths of scalar and vector interactions. The common property of all these bound states is that they appear at high particle densities when the chiral symmetry is nearly restored. Thermal properties of meso-matter as well as chemically equilibrated strange quark matter are also investigated. Possible decay modes of these bound states are discussed.Comment: 26 pages, 16 PostScript figures, RevTe

    Antiflow of Nucleons at the Softest Point of the EoS

    Full text link
    We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state.Comment: 13 pages LaTeX, 8 PS figures. Higher-quality PS versions of figures 3 and 4 available at http://www.th.physik.uni-frankfurt.de/~brachman/afl3f/afl3f.htm

    Statistical Multifragmentation in Thermodynamic Limit

    Get PDF
    An exact analytical solution of the statistical multifragmentation model is found in thermodynamic limit. The model exhibits a 1-st order phase transition of the liquid-gas type. The mixed phase region of the phase diagram, where the gas of nuclear fragments coexists with the infinite liquid condensate, is unambiguously identified. The peculiar thermodynamic properties of the model near the boundary between the mixed phase and the pure gaseous phase are studied. The results for the caloric curve and specific heat are presented and a physical picture of the nuclear liquid-gas phase transition is clarified.Comment: 4 figure

    Formation of hot heavy nuclei in supernova explosions

    Get PDF
    We point out that during the supernova II type explosion the thermodynamical condition of stellar matter between the protoneutron star and the shock front corresponds to the nuclear liquid-gas phase coexistence region, which can be investigated in nuclear multifragmentation reactions. We have demonstrated, that neutron-rich hot heavy nuclei can be produced in this region. The production of these nuclei may influence dynamics of the explosion and contribute to the synthesis of heavy elements.Comment: 6 pages with 4 figure

    Dynamical generation of the constituent mass in expanding plasma

    Get PDF
    We investigate dynamics of the chiral transition in expanding quark-antiquark plasma produced in an ultra-relativistic heavy ion collision. The chiral symmetry break-down and dynamical generation of the constituent quark mass are studied within the linear sigma model and Nambu-Jona-Lasinio model. Time dependence of the quark and antiquark densities is obtained from the scaling solution of the relativistic Vlasov equation. Fast initial growth and strong oscillations of the constituent quark mass are found in the linear sigma model as well as in the NJL model, when derivative terms are taken into account.Comment: 7 pages, Latex. To appear in Physics Letters
    • …
    corecore